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SUMMARY

It is suggested that prob lems in a reliability context

- may be handled by a Bayesian non-parametric approach .
- A stochastic process is defined whose sample paths may

be assumed to be either increasing hazard rates or decreasing

hazard rates by properly choosing the parameter functions of

the process. The pos terior dis tribution of the hazard rates are

derived for both exact and censored data. Bayes estimates of
- hazard rates , c.d.f.’s, densities , and means , are found under

squared error type loss functions . Some simulation is done and

estimates graphed to better understand the estimators . Finally,

estimates of the c.d.f from some data in a paper by Kaplan and

Meier are cons tructed.

I
I American Mathematical Society 1970, subjec t classifications

Primary 62G9 9 .

J Secondary 62F15.

I Key words and phrases: hazard rates ; increasing hazard rates;

~ decreasing hazard rates; Bayes estimates; extended gamma process;

posterior process; prior process.
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1. INTRODUCTION

Recently, there has been a good deal of interes t in nonpara-

• me tric Bayesian approaches to statistical inference . In this ap-

proach a stochastic process is defined whose sample paths index a

large family of distributions . Then conditional on a realization

of the process , i.i.d. observations are taken from the indexed

distribution , and inferences are made from the pos terior dis tribu-

tion of the process. In this manner the prior probability can be spread

over a very large number of dis tributions . It is also possible to

avoid explici tly specifying the functional form of the likelihood.

The most common approach has been extensively discussed by

Ferguson (1973), and consists of using a ‘Dirichlet Process ’ prior.

That is , a continuous time parameter stochastic process whose finite

dimensional incremen ts have a Dirichlet distribution is defined.

One can then assume that the s ample paths of this process are cumu-

lative distribtion functions . Ferguson shows that the posterior

distribution of the process , given the comple te observations , is also

dis tributed as a Dirichiet stochastic process , and uses this pos ter ior

distribution for making his statistical inferences.

Antoniak (1974) considers mixtures of Dirichiet distributions .

Doksum (1974) addresses his attention to prior stochastic processes

that are ‘tailfree ’, and/or ‘neutral’ . His posterior distributions ,

however , are ob tained in terms of expec tations ove r the entire prob-

ability space . Susarla and Van Ryzin (1976) were able to obtain the

posterior mean of censored data using a Dirich].et prior. Recently ,

Ferguson and Phadia (1976) were able to generalize these censore d

J data results to more general “neutral to the right” processes.

I
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This type of approach seems to have merit concerning statistical

inference in a reliab ility context . What is proposed , since the

concept of hazard rate plays such a key role in statistical reliability,

is to place the prior probability over the collection of hazard rates.

This is done by defining an appropriate stochastic process whose sample

paths are hazard rates. Wi th this prior we derive the pos terior dis-

tribution of the hazard rates for bo th right censored and exa ct

observations. This approach has the advantage of placing the prior

probability stric tly on absolutely cont inuous dis tributions rather

than on discre te dis tributions as is the case wi th the Dirichle t

process prior. Moreover , Bayes es t imators of the entire dis tribution

under natural loss func t ions are absolutely con t inuous . Finally,

since our prior random c.d.f. ’s are not neutral to the right , the

work of Doksum (1974) and Ferguson and Phadia (1976) does not apply.

2. THE EXTENDED GAMMA PROCESS

We shall assume throughout that our distributions have posi-

tive probability only on the nonnegative half of the real line ,

although one could adapt to distributions over the whole -real line .

The hazard function H(x) of a distribution is defined to be

H(x) = - ln(l - F(x) )

where F(x) is the left continuous c.d.f. of the distribution as

in Loeve (1963). (It is also possible to work with right con t~n-
uous c.d.f. ’s, but left continuous c.d.f. ’s are compu tati ona l ly
more conven i ent for us.) We shall re fer to F (x) = I - F(x ) as 
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the survival function of the distribution . Note that from some

point on, H(x) may equal plus infinity. If, for all x , one

can express

H(x) = f  r(t) dt

[ O ,x)

$ then r(x) is called the hazard rate of the distribution . Thus ,

r(x) is related to the density f(x) by the relationship

r(x) = f(x)

F(x)

and has the interpretation that r(x)E~ is approxima tely enwI l tn th e

probability of failure in the next ~ increment of time given

that a lifetime has survived until time x.

We denote by G(ct,8) the gamma distribution with shape

parameter ct � 0, and scale parameter 8 > 0. For ct. > 0, this

distribution has for its density with respect to Lebesgue measure ,

g(x~ c~,8) = xa l  exp

with the distribution assumed to be degenerate at 0 if ~ = 0

Let c~(t), t � 0, be a nondecreasing left-continuous real-

valued function such that ct (O) = 0 , and let 8( t), t �0 , be a

positive right-continuous real-valued function , bounded away from

0 and with left hand limits existing.

I
- I  
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Z(t), t ~ 0, defined on an appropriate probability space

(12, j, p) denotes a gamma process with independent increments

corresponding to a(t). That is , Z(0) 0, Z(t) has independent

increments and for t > s, Z(t) - Z(s) is G(a(t) - a(s), 1).

It has been shown (see Ferguson (1973) that such

a process exists and that its distribution is uniquely determined.

We assume WLOG that this process has nondecreasing left continuous

sample paths .

We now define a new stochastic process by

(2.1) r(t) = f  8(s)dZ(s)

[0 , t)

with the interpretation that for almost every w , Z(t ,u ) is a

nondecreasing left continuous function in t bounded on every

finite interval , and r(t) is the Lebesque Stieltjes integral ,

with respect to that function , of 8(s) over the interval [0,t).

We say a process defined in this manner has an extended gamma

distribution , and we denote such a process ~y

r(t) is r(a(~) , 8 (~))

The finite dimensional c.d.f.’s (or densities) of r(t) appear to

be rather intractable , although the distribut ion of the extended

gamma process is “nice ’ in many ways .

THEOREM 2 .1  If r ( t )  is distributed as r (c~(.), 8( ) ),  then

r ( t )  has independent increments and for f ixed t

- -_ - _-

~
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(2.2) the characteristic function of r(t) in some

nei ghborh ood of 0 is given by

~r ( t) ~~~~~ 
= exp - J ln (l - i8(s)O)da (s)J

[0 ,t)

- ( 2 .3) Er( t) = J 8 ( s ) d a ( s ) ,  and
[0 ,t)

• (2.4) Var r(t) = J 82 ( s )da (s )
[0 ,t)

PROOF: Le t 0 = < t~~’~ < • • < t]((1~) be a sequence of par ti-

tions whose norm goes to 0 and t~~~
(
~~

)
+co as n-’-~ . Define

(2.5) r~ (t) = E B(t~~~ ) Z( t~~~ )-Z(t~’~~)j
{i > O ; t ~~’~ <t }

where if the index set is empty,  we assume r(t) 0. Then

r~ (t) 
a.s. r ( t) so that r (t)_-~-s.r(t) and 

~r ( t) ~
6
~~~ r ( t) (0) .

Also , 
~r~ (t)~~°~ 

= 11 
~~j;t . <t} 3

(n
= II ( l - i8 ( t .  )

)~~~ ) -~

~j ; tY~~ <t } 
3

- 

= exp [ (a ( tc ) - a ( t c ~~ )) ln( l- i8( tc~~ ) o ) ]
3 3 3

- {j;t ~ ‘ ~t }

I exp [- ln(l-i8(s)0)dcz (sfl for 0 sufficiently close
[0 ,t)

I to 0.

I
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One can show (2.3) and (2.4) either by taking derivatives of the

characteristic function or by ver . ying that Err (t)~~~Er(t)
k
, k > 0.

The independen t increments follow easily by letting the increment

endpo ints be con tained in the par ti t ion poin ts.

Since the orig inal gamma process Z(t) is a pure jump process ,

the ex tended gamma process wi l l  also be a pure jump p rocess.

3. RANDOM HAZARD RATES

Prov ided a(t) is not identically zero , we may

assume that the sample paths of an extended gamma process r(t)

are well  defined nondecreas ing haz ard ra tes corres ponding to

absolu tely con tinuou s dis tr ibu tions . Thus the cond itional dis tri-

bu tion of the observa t ion s X 1, . . . ,  X~ given r(t) will be

de f ined  by

(3.1) P(X 1 � x1, ...~~ � x~~Ir (t)) = .fl
l
exP [*!

[ OX )
r (t)dtj a.s.

Of cours e (3 .1) and the dis tr ibu tion of r ( t ) w il l dete rmine

the join t dis tribu t ion of X 1, . . . ,  X~ , r(t) and will be used to

derive the marginal distribution of X1, . . . ,  X and the po ster ior

distribution of r(t) given the observed values of X1 , . . .  ,X

Since the sample paths of the r(t) process are nondecreasing functicns

a.s., we are pl acin g our p r ior  probabi l i ty en t i re ly  w ith in th e

class of dis tributions with nondecreasing hazard rates. Later , we

will show how the prior can be placed over distributions with

nonincreasing hazard rates.

I n a s s i g n i n g  a p r I or 
~ 
rohab iii ty measure by t h i s  i i ic t l iod  , one

____________________________ 4
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need s to inpu t the func t ions a ( t) and 8( t) .  One approach con-

sis ts of defining nondecreasing mean and variance functions p (t)

and a 2(t). It would seem reasonable to assign as ii (t) the

bes t “guess ’ of the hazard rate and use 02 (t) to measure the

amount of uncertainty or variation in the hazard rate at the point

t . Thu s a band jj(t) ± 2a ( t) should cover most of the “f ee l ing” for

the location of the hazard rate . Assuming p(t), a2(t) and o(t)
$ 

ar e all di f f e r en tia bl e , one can use (2.3) and (2.4) to set

p ( t )  = 8 (s)a ’(s)ds , and
• [0 ,t)

o2 (t) = I 8 2 (s) a ’( s ) d s
[0,t)

Solv ing for a (t) and 8( t) y i e lds

(3.2) 8(t) da2(t) 
, 

dp (t) 
, and

(3 3) da(t) 
= 

dp (t12 
, 

da 2(t)
dt dt dt

which then de termines  the pr ior di st r ibu tion.  The form of the

pos ter ior  dis tr ibu ti on g ives informa tion on the ef f e c t of th e

pr ior and may hel p in choosing a() and 8(•) -

The marginal distribut ion of an observation X can be found

from (3.1) with the use of a limiting argument . The proof of

Theorem 3.1 is g iv en in sec t ion 7.

• —~~~~~~ - - ~~—.—- -—•—--- •— --- — II~11.~
_ 
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THEOREM 3.1 If  the pri or over haza rd  ra tes is F ( a (~ ),8( ))

then the marginal survival function of an observation X is given

by

(3.4) ~(t) = P ( X � t )  = exp [- f ln(1+8(s)(t-s))dct(s)].
[0 ,t)

The marg inal survival  func t ion  of the obse rva t ions  X i~~• i ~~~Xn
can be found by methods  s imi l a r  to Theorem 3.1 and is given in the

fol low ing corol lary .

COROLLARY 3.1 If the prior over the hazard rates is r(a(•), 8(’)),

then the jo in t marg inal survival fun ction of n observa tions

• ~ 
Xn 

is

( 3 . 5 )  F ( t 1, . . . , t )  = P ( X 1�t 1, . . . , X � t )  = exp [-  f 1n (l+8(s)~~ ( s- t1)~ da (s~[0 ,c~) i=l

where a~ = sup {a,O }

Thus the marginal survival function of Y = m i n ( X 1, . . .  ,X~ )

• is of the same form as the survival function of just X1 
prov iding

8( s)  is repl aced by n 8 ( s ) .

The key problem in any Bayesian se tt ing is to der ive the

pos te r io r  dis tr ibu ti on. Mo reove r it is impor tan t to handle cen-

sored observations since reliability data are often of this type.

I f  an ex tended gamma pr ior is used , the posterior distribution for

right censored observations is also an extended gamma process . The

proof is g iven in section 7.

THEORE M 3.2 If the prior over the hazard rates is r(a(•), 8())
then the posterior over the hazard rates , given m censored

observ ations of the form X
1 

� x 1, X 2 � x2 ,  ~~~ 
X � X is

r(a(.), 8(e )) where

- -~~~~- -—
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A t
( 3 . 6 )  m

1-1-8(t) E (x .  -t )~j = l  1

The effect of censored observations is thus to lower the sample

paths to the left of the censoring points while leaving the values

to the right unchanged which appears inherently reasonable.

We next address ourselves to the question of the posterior

distribution of r(t) given exact observations . The answer to

that question is given in the following theorem , i.e. that the

pos terior can be expressed as a continuous mixture of extended gamma

distributions . However, the dimens ion of the mixing measure in-

creases with sample size. The proof is given in section 7.

THEOREM 3.3 If the prior over the hazard rates is r(a(.), 8(•))
then the posterior over the hazard rates , given m observations of

the form X1 
= ~~~~~~~ Xm 

= X is a mixture of extended gamma

processes. The distribution of the mixture is given by

(3 .7) P(r( t)~ B~X1
X1,. . ~~~~~~~~ =

1 .. .f ll~~~(z~) F(B;r(a + 

i=l (z 1,~~) ~~~~~ f l
1 1  

d + 

j=i+l 
I (z

3 
,

~~~~~~ (z~)

!0~
xm) [0 ,x 1)

II ~ (z~~) II d [a + ~i 1  i=1 j i + 1 3
[0
~
Xm) [0,x1)

Here F(B;Q) denotes the probability assigned to B £ 8R by a

stochast ic  process which  is d i st r i b u t e d  as Q,  
~~~~
( ) is defined

as in (3.6), and the iterated integrations are done first with

— ~~~~~~~~~~~~~—~ — ~~ — —— __________ — -~~~—
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respec t to z1 , then z2 , through Z
m • Of course

m
Z I~ ~(z.) 0

j =m+ 1 ~~~~~~~ 1

The complexity of this distribution makes it difficult to

see how an observation X1 
= x~ affec ts the pos terior. Close

examination reveals that a failure at time x
1 indicates an increase

$ in the hazard rate prior to x1 . However , this increase in the

hazard rate diminishes as one looks further into the past. This

is evidenced by the weight funct ion ~ (t) = B ( t ) [ 1  + 8( t) (x 1 
- t )~~}

1

in the mixing integral. The above effect is tempered by the rate

at which c*(t) increases so that ~ (t) and a( t) toge ther deter-

mine where and how the increase in risk (the unit jump in the a

function) occurs.

4. DECREASING HAZARD RATES

With very little modification the work done for increasing

hazard rates can be applied toward decreasing hazard rates. In

particular , let a(•), 8(•), and Z(•) be defined as in section

2 with one exception . We assume that ct(•) and 8() have

finite values at plus infinity designated by a (oo ) and 8(°°)

We requi re that ct(oo)  � a(t ) , t � 0 . Z (~) is of course

G(a(°°) , 1), and Z (co
) 

- u r n  Z ( t )  is independent of the rest of

the process. We then define a decreasing extended gamma process

(Dr(a(•), 8( ) ) )  by

(4.1) r(t) =1 8 (s)dZ(s) + 8 (00 ) [Z(co)-lim Z(t)] = f 8 (s)dZ (s)
[t ,00) t÷°° [t ,c~]

~iiL ~~
——•--—• -—-

~~ 
- 

~
--  — 

~~~~~~
— ---— —

~~
---—- -

~ 
— --- _ _~. ~~~~~~~~~~~~~~~~~~~~~ —.-- -- • - • • •- •• - ••
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With this definition , r(t) need not go to 0 as t goes to 00~~

Integrals w.r.t. a(•) are defined in an analogous manner. We

take r(t) to have non-increasing left-continuous paths . As

expected ,

E r(t) = / 8 (s)da(s),
[t ,00]

(4.2)

Var r(t) = f 82 ( s ) d c i ( s ) ,  e tc .
$ 

[t, co]

If one then uses a D F ( a ( t ) , 8(t)) prior over the failure

rates , essentially all the distributional results of Section 3

carry over providing we replace “extended gamma” w ith

“decreasing extended gamma”, define 
~~
(.) differently , and make

our range of integration be [t,00] rather than [0,t) . The

following theorems will be stated without proofs .

THEOREM 4.1 If the prior over the hazard rates is Dr(a(•), B ( )) ,

then the joint marginal survival function of n observations

X1, . . . ,  X~ is given by

(4.3) ~~~~~~~~~~~ P(X1�t 1~ ...~~~�t~) = exp[- f ln(l+8(s) ~ min(t~~s))d~ s)].[0,00] i=l

ThEOREM 4.2 If the prior over the hazard rates is Dr (ct(.), 8()),

then the posterior of the hazard rates given the n censored

observations X1 � x
1, ..., X~ 

� x~ is DF (a(.), 
~~

( ) )  wh ere

(4.4) ~(t) = 
8(t)

1+8(t) E min(x. ,t)
i=l 1 

.~~~ :T;_ i~~ _~ ____
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THEOREM 4.3 If the prior over the hazard rates is DF (cx(•), 8(•)),

the posterior of the hazard rates give n X1 x 1, ~~~~ 
X = x~ can

be expressed as a continuous mixture of decreasing extended gamma

dis tr ibut ions , i .e .  as

( 4 . 5 )  P ( r ( t ) c B I X 1 = x 1, . . . , X = X
m)

I I  m m - m in
••
~~~

• fl 8(z
~
)F(B;DF(a+ E ‘(z ~~~~~ 

fl dfct+ E I 001 (z .)
i=l i=l i’ “ i—l L j = isl  (z~~ .~ 

1

[x~~,00] [x1,00] 

m m m
f “f  11 8(z.)  E d  ~~

+ 
00

[x ,00l [x1,00] i=l 1 i=l j= i+l (z~~ :i z
~

The hazard rate est imation discussion in Section 5 w i l l  apply

to the decreasing case provi de d one makes the obvious ch anges in

the various expressions . Similar ly , the computational results in

Sect ion 6 can eas i ly be modif ied to handle the decreasing hazard

rate situat ion .

5. BAYES ESTIMAT ORS

(a) Estimation of hazard rates.

A natural loss function to be used when estimating a hazard

rate is the generalizat ion of squared erro r loss given in Ferguson

(1973) . Thus our loss function will be

(5 .1)  L( r ,~~) = f (r(t) - (t))2dW(t)
[O ,~)

where W is an a r t i t ra ry  f in i te  measure on [0 ,00) such that

I I 82(s)da(s)dW (t) < 00

(0,00) [O ,t) 

- ----- ~~
- t LL:~~~~~~~~~~~~~---~~ -~~~~. •
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In finding i(t) which minimizes the expected loss , we may

interchange the order of integration and thus minimi ze

E ( r ( t ) -

for a fixed t. The Bayes estimator is given by the posterior mean

of r(t).

If we ignore censored observations , we may use the form of

E r(t) in (2.3) and the fact that the mean of a mixture of distri-

butions is the mixture of the means (assuming existence) to express

the Bayes estimator of r(t) as

{~,;~; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(5.2) ~(t) 

I

5. . . 5 II 8(z ) II d(c&(z.)+ E I (z1)]
[O,x~) [O ,x1

)i~ l 
1 1 j~ i+l(z~.00)

where the iterated integrals are integrated with respect to z0,

z1, z2, etc. , respectively.

Note that the denominator is of the exact same form as the

numerator , th ough the in tegra l  is of a smaller  dimension .

Obviously ~(t) is a nondecre asing function of t as expected.

Including censored observations would only modi fy the ~ function .

While some approaches of nonparametric hazard rate estimation

require the use of an arbitrary window function w(.) of integral

one , this approach is free of any such function .

— ----
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It would appear that the utility of this estimate is severe ly

limited since it involves a multi-dimens ional integral. We shall

show in the next section , howeve r , that ~(t) is expressible in

a manner that involves only one-dimensional integrals .

If the prime consideration is predictive in nature , the

solution is different. Suppose

(5.3) p*(t) = P(X~,1 � t f xl = x1, ... , x~ =

denotes the conditional survival function of a future observation

given n current observations . Then

(5.4) ~*(t) = 

r(t)Ix1~ ...~ x~ 
fl~~1 

~ ~ I r ( t) ,  X1=x1,...,X~=x.~)

where the expectation is with respect to the posterior distribution

of r given X1 = x1,..., X~ = x~. Since the L’s are

conditionally i.i.d., this is equivalent to

E exp [ - / r(s) ds]
(5.5) r (t)1x 1,...,x [0,t)

which is the posterior mean at t of the random survival function

~(t) defined from r(t) by ~(t) = exp[-f (O~~)
r(s)ds]. Thus ~F*(t)

can be thought of as the Bayes estimate of the survival function for the

squared error loss function

(5.6) L(F,F) = / (F( t) - ~( t ) ) 2 d W (t)
[0,00)

where W(t) is a finite measure over [0,00). Including censored

_ •
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observations only changes the form of the ~ function .

To f i n d  a closed form expression for  T5* ( t ) ,  let

( 5 . 7 )  C’m f II B ( z . )  fl d ( a ( z ~ ) +  E I (Zj ) ]
(O~ x~) (O ,x1)i~] 

1 i~k j~ i+l (z~~,~~)

denote the norming constant in the posterior of r(t) . Since the

posterior is a mixture of extended gamma distribution , we may use

Theorem 3.1 to obtain

(5.8) r(t) =

= 1 1 II ~(z.)exp[-f 1n(1+~(z0)(t-z0)~)d(a(z0
)+ E I (zo)~ 

II d[cx(z~)+ Z I (z.)]
[0,x~)[0,x1)i=l [0,00) i 1~ Z~ .00) 1=1 )= 1+ 1( Z

3
,00)

Th e integrand can be evaluated as

A A + A 4.
(5.9) 11 ~(z.)exp [-f ln(1+8(z0)(t-z0) )dcz(z0)-E ln(1+8(z~)(t-z~) I

1=1 [0,00) i=1

A + 
n 8(z.)

= exp[-J ln(1-’-8(z0)(t-z0) )da(z0)I ~I A 

1 
+

[0 ,00) i=1 1+8(z.)(t—z.)

Noting that our first factor is free of z~ , and relabeling

I (5.10) 8*(z ) = 
A 

1 
+

l + 8 ( Z
~~

) ( t- Z
~~)

I
w e o b t a i n

I

-

~~~~
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I i

(5.11) ~*(t) = e x p [ - f  ln ( 1+~~(z 0 ) ( t - z 0 )~~)da ( z 0 ) ]
[0,00)

n n - n
I ii 8* (Z j ) JI d(a(z~ )+ Z I (z.)J(LX~)[b ,X1)i=l i—i i=i+1(z~~00)

1

A flI. • • 5 11 8(z~ ) 11 d[a(z~) + E I (z )]
(O~x~) [O ,x1)t=]. i—i j=i+l(z

3
,00) ~

Similarly , Corollary 3.1 can be used to express the joint survival
function of k future observations X +1,... , ~~~ Conditional
on the observe d data. Thus

(5.12) ~~t 1 ’ ’~n+k~ 
= P(X �t ,...,X k �t +k l x i =x 1,...,X x )n+i n+i n n

+i s of the same form as (5. 11) wi th  ( t - z . )1
n+k

+
replaced by E (t~ 

- Z
~~
) • One of the conse quences of

this is that the minimum of k future observations has the conditional
A A

survival function given in (5.11) with 8 replaced by k8 -

Noting in (5. 11) that  8* is a non inc reas ing  f u n c t i o n  of t

which is equal to ~ when x 0  guarantees that F*(t) is a

bonafide survival function . The first factor of P*(t) in (5.11)

would be the survival function of a future observation were the

observations censored at x 1, . . .  ,x~ rather than observed.  Thu s

the second factor contains the information gained by observing

“deaths” rather than “losses” (see Kap lan and Meier (1958) for

elaboration on this terminology) .

~~~~~~~ - - — ~~~~~~~
—— - - -—

~~~~~~~ 
-

~~~~~--~~~~~ — ~~~~~~~~~~~~~~~~~~~ - — - - - • •
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Note that p*(t) is differentiable. By using the product

rule for derivatives , interchanging derivatives and integrals , and
interchanging the order of integration , it can be shown that the

density corresponding to P*(t) is given by

(5.13) f*(t) = exp [- f ln(l ~ 8(t-z0)~ )da (z 0)[0,00)

n n n/ . . . 3’ 3 ’ fi ~~*(Z ) II d [a (z.) + 11 Ij O ,x~ ) [0 ,x1) [0., x ) i=0  i=0 1 j=i+l (z~~ .~

[0~ x~) [D~ x1)i= 1 ~ (z
~

)
~~~~d[a( z 1)+~~~~~~I (z ,00) 

(z~ ) ]

Moreover , if we define the random density funct ion by

(5.14) f(t) = r(t)exp[- f r ( s ) d sj  = -
~~~~~~

. P(t)
[0,t)

then by interchanging differentiation and integration over the

posterior distribution we have

(5.15) f *(t) = -
~~~~~~

- E(P(t)) = E (- - ~ (t) )  = E( f ( t ) )

so th a t f *(t)  is the B ayes est imate of the density with the usual
type loss func t ion ,

(5.16) L(f,
A
f) = f (f(t) -f(t))2dW (t) .

[0 , t)

• —~_------ -~---
_ 

—• ---—-— —~-— -— — - — L. •—
~
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This suggests an approach to density estimation which gives

smooth continuous estimates and avoids the problem of defining

window functions as in Rosenblatt (1971).

Finally , we may obtain the failure rate r*(t) corresponding

to p*(t) as

*
(5.17) r*(t) = 

~~~~~~~~~~~~~~~~ 
=

F (t)

n n n
f • • •  f ... 5 II 8~~(z~ ) II [da(z

~
) + E ‘[z oo) j) ]

— 

[O ,x~) [0,x1)[0,t) i 0  i=0 j=i+1 j’

fl n n
5 ... 5 II 8~~(z.) II [da (z.)-1- E I~ )

(Z.)]
[O ,x~) [0,x1) i=l 1 i=l 1 j=i+l L Zj~ 1

However, this is the same expression as in (5.2) with the exception

that the ~‘s are replaced by 8
*t s. In other words , the effect of

using the loss function over the c.d.f. ’s (5.6) when estimating a

distribution (be it c.d.f., density, or hazard rate) at a point t

rather than the loss function over the hazard rate (5.1) is merely

to act as though one has an additional censored observation at the

point t .

If one is interested in estimating the mean of the distribution

in question , then

(5.18) = / 
00 

F(t)dt f exp [-  / r(s)ds j dt
) [0,00) [0 ,t)

_______________________________________________________________________________________________ 

I

~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ •~~~~~-•,•~~ - ~~~~~~ • • • • ~~~~~~~~~~ :-~~~~
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is a well defined random variable providing

5 exp [- f ln ( l+ 8(s ) (x - s )) da( s ) ]d .t < 00

[0,00) [0,t)

Taking expectations with respect to the posterior distribution , the

mean of the estimated survival function P

(5.19) ~.i * = f ~ * (t )~~ = 5 E(P(t))dt = E(p)
[0 ,00) [0 ,00)

is the Bayes es tima te of ~ under the usual loss function

(5.20) L(~~,~~) = (~ .~~)
2 

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. COMPUTATION AND SIMULAT I ON.

The presen ce of the multi-dimensional  integral which occurs in

our estimates would appear to make computation extreme ly di fficult.

The following theorem enab les us to work with integrals  of only

one dimension . The integrands are powers of the ~ function and the

in tegra tion is wi th respect to the a measure .

THEOREM 6.1 Assuming that a(•) and 8(•) are defined as in

Section 2 , then

(6. 1) 
[O ,x )

= ~ k(e) II f 8(t)eida(t) I{1,e1�l}[O,x.)

where 0 < x~ � x~~1 � . . .  �x 1 
< 00 , the sum is ove r all vectors

= (e1, . . . ,  e~) of non-negative integers such that

j  n
E e. � j, j = 1, . . . ,  n-i; Z e. = n ;  and

i=l 1 i=l 1

(6. 2) j-l j
k(e) = TI j 1  = II [(j-l)- E e.]!/[j-~ e.]!

{j;e~�2} [(J_l)_Ee ~ JPe~~1 {J~e~�2} 1 1 1

where nPr denotes the number of permutations of n things taken

r at a time .

j
~~~~~~~~~~~~~~~ ~~~~-—-~~~~~~~ - 

-
~~ii -- -- ---~~~~~

--- -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- ~~~~~~• - - —~~~~~~~
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PROOF: Since the inside integral can be exp ressed as a sum of n

in tegrals , the next as a sum of n-i integrals , etc., i t is clear

that (6.1) can be exp ressed as a sum of n! integrals . Moreove r,

since we as sume the xi ’s are orde re d in decr easing fash ion , IL

must be the case that

(6.3) 3’ 8(z.)dI (z.) = ~(z.) for z. < x . � x., j > I.
• [0,x.) 1 (z ,00) 1 3 3 3 1

• 1 3

This will then combine with ~ (z~ )’~ to give ~ (z~ )~~
1 - 1
~ for some

integer k. Close scrutiny will reveal howeve r that the exponent
A kk of 8(z~) can neve r exceed j. Moreover , each of the n!

integrals will be of the form

A e.
II f 8( t ) 1dct(t)

(6 .4 )  {i ,e
~
�i} [0,x

~
)

n
where E e.n , the e. being non-negative integers . Thus to

i=l 1 1

establish Theorem 7.1 , we need only argue tha t k(e )  correc tly

counts the number of terms of the form given in ~S .4).

Conside r a vector e = (e 1, • . .  , en) of the form specified

in the statement of the theorem. Fix j and assume that e. � 1.
A e. .th

Then one unit of the exponent of 8(z~) j  must come from the j

integration , and the other e.-1 units mus t come from previous
i-i

integrat ions . Since there will be (j-l) - 
~ e. previous inte-

i=l ~
grations unaccounted for , there are

I
(6.5) (

~ 
1=1

1)

3

- -~~~~ • - ~~~~~~• - ~~~~~~~ ~-•—-~~~ - -
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ways of choos ing the required e. - 1 integrations. Moreover, the

f i r s t  chosen integration can incre as e the exponent in e . - 1 ways

(by being routed to any of the other integrations which eventually

contribute to e~ )1 the second chosen integration can incre ase the

exponent in e. - 2 ways , etc. Thus we need to multiply (6.5)

by (e~ - 1)! to count how many ways we can obtain the necessary

exponent. Using the multiplicat ion principle then to coun t the

total number of terms (6.4) for a given vector e gives us k(e).

• Example  Conside r the ve ry specialized case where c&(•) jumps at

• 0 and is then flat. That is

a (0) = 0

a(x) = a, x > 0.

In this cas e , r ( t )  wi l l  be a constant function whose value wi l l

be a G(ct, 8(0)) random variable . Thus the only value of 8(t)

that matters is 8(0) = 8. Since the parameter in an exponential

dis tribution is jus t its constan t failure rate , this is equivalent

• to putting a G(a ,8) prior over the parameter e of an

exponential density .

Then if we have complete observa t ions at ~~~~~~~~~ and censored

observations at Xn+i~~•~~•~
Xn+m~ 

we can specify our posterior distribution

of r(t) from Theorems 3.2 and 3.3. Since the posterior of

an exponential distribution with a gamma prior is again a gamma,

the distribut ion of r(t0) ,  t0 > 0 specified by the mixture  in

Theorem 3 .3 mus t also be a gamma distribution .

In this event , the Bayes estimate of r(t), t > 0, is a

_ _ _  _ _ _ _  _ _  
•

— — --_—- •— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________ •~~~•~~~~ ~~~~s _ .-__ -



— 
______ 

—-— ..~~~~~~ •_
—--

_
— —----—-,--_-_—.r- ~—— --—------.— — 

___________________
_ _ _

-23-

constant ( f ree  of t )  and may be expressed in terms of Theorem 6.1.

Let #e denote the number of non-zero components of e. Then

from Theorem 6.1 , the numerator of ~(t) equals

E k(~) a

+l n+l -

=8(0)” ~ E k( e)
$ 

i=1 {e;#e i}

However , it can be shown that k(~) is the coeffi-
{e;#e=i}

cients of Z 1 in Z(Z+l)(Z+2)...(Z9-n) (the modulus of Sterl ing

numbers of the first kind). Thus the numerator of ~(t) equals

n+l
• 8 a(cz+l). . . (ct+n)

n~m1+8 E x.
i=l

By similar treatment , the denominator of ~(t) equals

8 \ ~a(a+l)... (a+n-1).
n+m

1+8 ~ X.

Thus ~(t) = 

1 ’ 

(a+n) = 
1 

n) 
, ~ > 0 .

1- ’- 8E x ~ (_+~~~xi)

This agrees with the posterior mean for uncensored data given in

Mann , Schafe r , and Singpurwalla (1974) (see page 414). As one

would expect , as n-’~

~(t)~ [total no. of failures]/[total time on test].

I
I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In order to observe the performan ce of our Bayes estimators ,

samples from Weibull and exponential distributions were taken and

the corresponding Bayes estimators computed. In all cases the

sample size was 11 and the prior parameter functions a(t) = t., and

8(t) 2 were used. Thus the expected value of the prior hazard

rate would be 3’ 8(s)dc&(s) = 2t. This is the hazard rate of
$ [0,t)

a Weibul]. distribution with mean .8862. All observations were

complete (not censored). It is true that if one decreases 8 ()

and increases c*(•) in such a way that the mean of the prior

5 8(s)dct(s) is unchanged , the variance of the prior 5 82 (s)da(s)
[0,t) [0,t)
will be decreased. This has the effect of specifying a more precise

prior distribution and hence the prior will have more influence

in posterior estimates.

Bayes estimates are computed under both loss functions i.e.

squared error loss on hazard rates and c.d.f.’s. The hazard rate

corresponding to the Bayes estimate of the c.d.f. is graphed along

with the estimated hazard rate on the hazard rate graphs for the

- - ~~~~ - purpcise O~~~omp~rfson. Similarly, the c.d.f. corresponding to the

• Bayes estimate of the hazard rate is graphed on the c.d.f. graphs.

Thus on figures 1-6, the posterior Bayes estimate of the hazard rate

is denoted by a solid line, while the hazard rate which corresponds

to the posterior Bayes estimate of the c.d.f. is denoted by the line

made up of alternate dashes and plusses. Since the key is the same

for al l graphs, it is stated explicitly only in Figure 1. A similar

interpretation holds for figures 7-12 concerning the c.d.f. ’s. Thus 

-i-—---~~-• -. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~-- -- • - • • -
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the distributions corresponding to the solid (plus-dash) lines in

figures 1-6 are the same as the distributions corresponding to the

alternating plus-dash (solid) lines in figures 7-12 respectively .

Figures 1, 3, and 5 depict the Bayes estimates of the hazard rates

when the random samples come from Weibull distributions whose failure

rates are respectively t, 2t, and 3t. Note that the estimates reflect

the populations from which the samples come by generally having

progressively steeper slopes. (Note that the scales change between

graphs so that visual slopes are deceptive.) Figures 2, 4, 6, depict the

Bayes estimates of the hazard rates when the samples come from

exponential distributions. In each case the mean of the exponential

is made to be the same as the previous Weibull distribution .

The purpose of this is to see if our estimated hazard rates

will reflect the difference between Weibull and exponential distri-

butions. Note that in each case, the estimated hazard rates are

flatter for the exponential distributions than for the Weibull

distributions. Of course since exponential distributions are on

tfie b~und~r~~ (~ ur ‘~riör puts all the probability on nondecreasing

hazard rates), our estimates of the hazard rate will necessarily

be increasing to some degree. Figures 7-12 give the estimates in

terms of c.d.f.’s rather than hazard rates. They are of course

based on the same samples used in Figures 1-6. Finally , Figure 13

and 14 depict estimates of the hazard rate and c.d.f. for the data

given in the Kaplan and Meier (1958) paper. The prior was

arbitrarily taken to be cz ( t )  = t , t3 (t) 4 and the starred lines

I
I

‘ -~~~~~~~ a.~~~~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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indicate cencored values. Note that a slight peaking occurs in

estimates of the hazard rate at complete observations , although

this peaking is scarcely detectable in the c.d.f.’s. In comparing

these graphs with the estimates of the c.d.f. given in the papers

by Susarla and Van Ryzin and Ferguson and Phadia , it appears that

$ 
our estimate is closer to the Kaplan-Meier product limit estimate

than theirs. We feel that our continuous estimates are more

appealing than their discontinuous estimates.

In conclusion , it appears that our estimates have the property

of being smooth and continuous and yet are very responsive to the

data.

7. P~~OFS OF ThEOREMS

In this section we take our stochastic processes to be defined

on an arbitrary probability space (~~, F , P). We use RR to denote

the set of all nonnegative fun ctions on the nonnegative real line

R and to denote the smallest a—algebra generated by sets of

the form {x (~ )c R
R : x(t1

)c I
i,..., x(tk

)c I
k

} where ~~~~~~ ~~

are intervals in R. A stochastic process r is a measurable

function which maps ~2 into RR. This induces a probability measure

on (R~
k, 8R~ 

called the distribution of the process r. Since ,

with probability one , the sample paths r (t,w) of our stochastic

process are fai lure rates , we can define a probability measure P

on the product space (RR x R, BR 
x 8) by extending P(B X C) =

fF~
(C) dP(u) to the usual product a-algebra of and the Borel

sets 6. Here A r~~~(B) and F
~

(C) is the probability assigned

— .
~~~~~~~ —- •— — . .  — ..  -~~~~~ • - - - - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ •~• -•
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to C by the distribution corresponding to r(~ ,’~). Then a probability

measur e on (R , 5) is determined by P(C) = P ( R ~ x C)

F~1~(C) dP(w) V C € 6. The posterior distribution of the process

for a single observation is a function 4 ( • , •)  X R —oP ~O , 1)

Borel measurable in the second argument when the f i r s t  argument is

fixed such that for each fixed x c R , (‘,x) is a probability measure

on (R’~ , 6
R~ 

and f ~(B , x) d~ (x)  = P(B x C) for all B c and C i 5.
C

The extension for several observations is straightforward .

For convenience in writing we adopt the following notation :

(i) g( x; c*,8) = xa ‘exP(—x/8)I[0 ) 
(x) / F ( a ) c x ~~; g ( x ; c z ) = g( x ;a ,l)

( ii) = (t~~~~~~~ ) — c ~~(t ~~~
’
~~~~) , i = 1, ..., k(n)

(iii) = B (t~~~ , i = 1, - . . , k (n)
k(n) k(n)

(iv) ~~~~= Z and 11 II

- 

(v) B (~~,8,t,y) = {(u1,...,~~~~~)cR
k
~~~: Z B~~U~~>y 1, Z 8 ~ u~ >y25...,

i i  1 1 2

> y~ }. Often B(u ,~3 ,t,y) is abbreviated B ( 3~,i3).I T
~~ l

�ti<Tk

(vi) F(B;Q) = Probability assigned to B c 8
R 

by a stochastic

process with distribution Q.

I
I 

LEMMA 7.1

Let o~(•) be a nonnegative nondecreasing left continuous

I function on [0, °‘) with c L ( 0 )  = 0. For a sequence of partitions

0 = to - tj• < t)c(n) <~~~~ whose norm goes to zero and whose

I
I

L - 
-



upper end point goes to inf inity , def ine an (O) = 0 and

k ( n )
(t) = Z ct (t.)I (t) + c* ( t

k 
)I (t), t £ (0,x)

n i=l 1 (t
~_i,

t
~

] (n ) (tk(n)~

If we define B and rn (t,w) as in (7.6) and (2.5) respectively ,

A = r 1(B) , and A~ = r~~ (B) , then

$ (7.1) f i (w) dP(W) —
~ f ‘A~~~~ 

dP(w )

i.e. F(B; r(c~~~~)) —÷ F(B; r ( c x , 8 ) )  and

(7.2) Urn / II ~~~~~~~~~~~~ = F(B;r(a,B)).
n+~ B(U ,8)

PROOF: For almost all w , r (T,w )—.~r(t ,(A ) uniformly on [0, t],

0 < t < ~ since rn (T , w) and r ( T , w) are almost surely non-

decreasing lef t continuous bounded functions on t c [~~, ti . Thus

I (w)~-~4 I (to) ) and (7.1) follows by LDCT. Note that
An A

~~~ I ‘A ~~~~ dP(w) = F(B ; r(~~~,8)) = f II g(u.;~~~.) du . .
n B(u B) 1 1 1.

n

Thus the l.h.s. of (7.2) exists and is equal to F(B ; r(a ,5)).

PROOF OF ThEOREM 3.1: Define r (t) as in (2.5). As noted before,

Z ( t ,w)  is nondecreasing and left continuous for almost all w .

Hence r ( -r ) , -r c [0,t] is bounded almost surely and 
~~~~~~~ 

r(i)

for each i c (0,t]. Thus f r (-r ) di —+ f r(t) dr (by LDCT)
[0,t) n [0,t)

for almost all w c ~1

-- ~~~~~~~~~
. — .- ---- - -S----—, 

~~~~~~~~~~~~~~~~~~~~~
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Now , P(X t) = f P(X�tlr( .,w))dP(w)

= f exp [— J r(T) di]dP (c~)
12 [0,t) H

= lim f exp [- / r
n
(i)th]dP (to ) by LDCT

n-~~ 12 (0,t)

= lim f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ Q

= lim f exp [—E (t—t1)~~~~
u~ ]ll g(u~ ;i~cz~ )du~

$ n

(7.4) = lirn 11(1 + (t—t.)~~B.)~~~~i
fl -’-

~~~

(7.5) = exp (— f ln(l+B (s) (t—s))dct (s)].
[0,t)

PROOF OF THEOREM 3.2: First consider the case m = 1. Define

B ~ R 
by

(7.6) B =  {r(.)CRR: r(T1)>y 1O r(T2
)_r(T

1)>y 2v ...~ r(i~
)_r(T~_1)>y~ }

where k is an arbitrary positive integer and <•••<

~~~~~~~ 
~k 

are arbitrary nonnegative real numbers . It can be shown

that the distribution of the process r(t,w) is uniquely deter—

mined by the probabilities given to sets of the form A = r (B).

Thus it suffices to show that the posterior probability of sets of

the fo rm A = r ’(B) equals that assigned by an extended gamma

process with parameter functions ct (•) and ~~(•).

Defin ing  r~~( t .  as in ( 2 . 5)  and An = r ’ ( 13) , then

r (t)~~~~sr(t) and ‘A ’ ‘A ’ Thus

- - ___ __s__ 
- S 

- 
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P(r(t)cB IX � x )  = P(r(t)EB ,X�x) /P(X�X)

= J exp [— / r(t)dt]dP(w)// exp (— f r(t)dt]dP (w )
A [0 ,x) 12 [0, x) 

-

= lim / exp[- f rn (t)dt]IA (w)dP(w)/lim fexp [- f r (t)dt]dP(w)
n~~ 12 [0,x) n n-’-~ 12 [O ,x)

= iimf ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ l + B . (X_ t . )
+

]

1 by(7.4)

B(u ,B)

= lim f II g(u~ ;~ ot~~ l+B
~
(x—t

~
)
~~
)du

~
“~~~~~~ 

~~~~~~~

= u r n  f II g (v
1
;~~ct~ )dv~ where B

~
u
~ 

= B.v .

B (v,B)

= F(B;r(ct,~~)) by (7.2) of Lemma 7.1.

This proves the theorem for m = 1. Using a parenthesized subscript

to emphasize explicitly the dependence of on the sample size,

we h ave ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = ~ (~~÷1) (t ) . The theorem

follows by induction .

PROOF OF THEOREM 3.3: First consider the case m = 1. It suffices

to consider sets of the form B where B is defined by

( 7 . 6 )  and show that

(7.7) f • (B ,x) f(x) dx = P(r(t)cB, X �x)
[x ,~~)

where

(7.8) f(x) = — i-- ~ (x) = - i.. f exp[— J r(s)dsjdP (w )
12 [0 ,x)

is the marginal density of X and 

~~~~ .~~~1 - — — - -- -~~— - .2A - -
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(7.9) ~ (B,x) = f ~ (s)F(B;r(ct+I ( ~~~~fl dct(s)/ f ~(s)da (s)[0 ,x) ‘ [0,x)

is the conditional distribution of the process. To show (7.7) we

define •~~(B ,x) and f~~(x) below by (7.11) and (7.12) respectively

and prove the following series of claims :

• Claim 1: (7.10) f ~n
(B
~
X)f (X)dx = f exp[—f r (s)ds]IA ( w ) dP (w)

[x ,~ ) 12 [0 ,x) n

where rn is defined by (2.5) and A
n 

= r ’(B).

Claim 2: The r.h.s. of (7.10) converges to P(r(t)EB , X� x )  as n -~~

Claim 3: The l.h.s. of (7.10) converges to f ~(B ,x)f(x)dx as
[x ,oo)

n-~~.

We define

(7.11) 
~n~~ ’~~4’ 

exp [— f rn (s)ds]IA (w)dP(w)/a~
fexp[_ f r~ (s)ds ]dP(w)

12 [0 ,x) ri 12 [0,x)

and

(7.12 ) f (x) = — 

~~ / exp [—/ r (s) ds] dP(~ )
12 [0,x)

Claim 1 is a direct consequence of the above definitions.

Claim 2 follows since r~~ (s) a11
~~~ r(s) , I

A

(u) ) IA (w) and by

LDCT the r.h.s. of (7.10) converqes to / exp i- / r(s)ds]IA (w )dP (w) =

cz [0 ,x)

P(r(t)CB , X � x ) . To prove claim 3 we show below that (i) f~~(x) -‘-f(x)

( i i) q~~(B,x)f~ (x)--4 (B,x)f(x)~ observe from (7.13) and (7.15) that

0 ~ ~n ’~~~~n~~~ 
� f (x) and note from the definitions (7.8) and

(7.12) that J fn
(X) dx÷ f f(x)dx. Thus claim 3 follows by a

(x ,oo) [x,~~)

genera li zation of LDCT (see theorem in Royden [1968], pg. 89).

I
U
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(i) To show f~~(x)-.-f(x)~ we use (7.4) to write

= —~~~[JJ(l+8 .(x - t i)~~)
’J

k(n) +
= E[

~
c1j(l+B~~

(x_t
~
)
~~
) 1 BiI~ 0,xftj

).It
~~
1+Bj

(X_t
j
) ) J i

j;~i
A

$ 
= [rI(l+B~~(x—t~ ) ) B j I10 ~~

t
~
)L
~
nct 1

+exp[— f ln(l+B (t)(x—t)~~)dci(t)] f ~(t)dcz(t)
[O,~~) 

[0,x)

= — exp(— f ln (l+~ (t)(x—t)~~)dct(t)]dx [0,°~)

(7.13) = f(x) by (7.8) and Theorem 3.1.

(ii) To show 
~n

(Bi X) f~~(x)-s. 4 (fl ,x)f(x) , consider

(7.14) ~n~~ 1X~~n~~~ 
= — 

a~~ 
/ exp (— J IA (w)dP(w) .

The derivative of the integrand in (7.14) is _rn (x)exp
[_ f r (s)ds]

which is nonpositive and bounded below by the integrable functic~
_r
n
(t
k(n) ,cto) . Thus

= f r (x)exp (— f r (s)ds]IA (w)dP(w)
12 [O.X)n

B ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
n “
k(n)

= 
~~~~~~~~~~~~~~~~~~~~ exp [—E 8. u . (x — t . )~~]ng (u. ;t ~a .) au

- — -—- S - -
I.-—.— :_J ~~~._ 

- - -~~~~-• - - - ,
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k(n) ~~~~~
- +

= 
~~Bj

I
lO ,X~~)

)f
(~~~ )J 

~~~~~~~~~~~~~~~~~~~ J / r (~~ ct~~ ) }du~

+
It {u. 1 exp [—u.(1+B~~(Xt~ ) )]/r (tct.)}du.

i�j

$ 
—ta. K(n)

(7.15) =[ll(l+B.(x—t.)~ ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
J

where B~u~ = ~~V .. The term in the brackets converges to

exp[- f ln(l + B(s) (x-s)~~)dct(s)] and the expression in the braces
[0 ,°)

can be written as / {E 
~~

F(B;r(cL
~ 

+ 1(t ,°°)‘~~~~~(t ,~~~~ 
fs) }dct(s).

[0,x) i i—i i
Since a(s) and B (s) are bounded for s C [0 ,x] and the integrand

converges to u (s) F(B;r(ct + I( Q ~)l~~)) by Lemma 7.1 , application

of LDCT yields

(7.16) ~~ (B ,x)f (x)÷exp[- f ln(l+B (s) (x-s)~~)da(s)]f ~(s)F(B;r(a+In [0,x) [0,x)

Thus ~~(B,x)f (x)-~~(B,x)f(x) since the limit in (7.16) equals

4(A,x)f(x) by Theorem 3.1, (7.8) and (7.9). This concludes the

proof for m = 1. For m = 2, a similar proof can be given. The

posterior distribution after the first observation is used as the

prior for the second. Thus 4~~(B~x) and f~~(x) are similarly

defined except that r(t ,w ) is distributed as a mixture of extend-

ed gamma processes. The detailed computations are more cumbersome.

B

_ _ _  
. 

~~~~~~~~~~~~ 
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One can use a generalization of an unsymmetric Fubini theorem given

by Cameron and Martin (1941) to interchange the order of certain

integrals that are encountered. Using LDCT and the result proved

for m=1, one arrives at the result for m = 2. The proof for

arbitrary m follows by mathematical induction .
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